organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Frauke Schödel,^a Hans-Wolfram Lerner,^a Miriam Bru Roig^b and Michael Bolte^a*

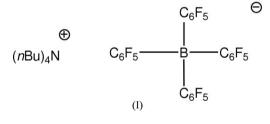
^aInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Marie-Curie-Strasse 11, 60439 Frankfurt/Main, Germany, and ^bDepartament de Química Inorgànica i Orgànica, University Jaume I, Campus Riu Sec, Avenida Sos Baynat s/n, 12071 Castellon de la Plana, Spain

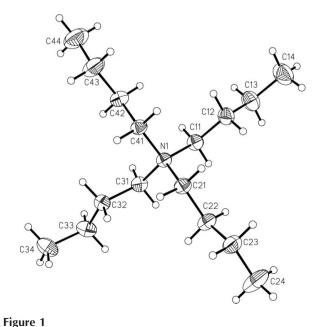
Correspondence e-mail: bolte@chemie.uni-frankfurt.de

Key indicators

Single-crystal X-ray study T = 173 K Mean σ (C–C) = 0.005 Å R factor = 0.033 wR factor = 0.075 Data-to-parameter ratio = 6.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.


Tetra-*n*-butylammonium tetrakis(pentafluorophenyl)borate


In the title compound, $C_{16}H_{36}N^+ \cdot C_{24}BF_{20}^-$, the geometric parameters do not show any unusual values. The four *n*-butyl chains adopt an all-*trans* conformation.

Received 23 November 2005 Accepted 1 December 2005 Online 23 December 2005

Comment

Very strong cationic Lewis acids are only available in the presence of weakly coordinating counter-ions such as $[B(C_6F_5)_4]^-$. These anions also play an important role in electrochemistry. The salt $[^nBu_4N]^+ \cdot [B(C_6F_5)_4]^-$ possesses a low reactivity towards reducing and oxidizing agents. Moreover, conductance measurements show that the dissociation constants of $[^nBu_4N]^+ \cdot [B(C_6F_5)_4]^-$ solutions in solvents with low polarity are greater than those of smaller traditional anions (LeSuer *et al.*, 2004). Therefore, we are convinced that tetra-*n*-butylammonium tetrakis(pentafluorophenyl)borate, (I), is an ideal supporting electrolyte. We have synthesized (I) and we report its crystal structure here.

© 2006 International Union of Crystallography Printed in Great Britain – all rights reserved

Perspective view of the cation of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Perspective views of the cation and anion of (I) are shown in Figs. 1 and 2, respectively. Bond lengths and angles can be regarded as normal (Cambridge Crystallographic Database; Version 1.6 plus three updates; Mogul Version 1.0; Allen, 2002). The four *n*-butyl chains adopt an all-trans conformation.

Experimental

Compound (I) was synthesized according to the literature procedure of LeSuer et al. (2004). Colourless crystals of the title compound suitable for X-ray diffraction were grown from a methanol solution at 253 K.

 $D_x = 1.480 \text{ Mg m}^{-3}$

Mo $K\alpha$ radiation Cell parameters from 10062

reflections $\theta = 3.6 - 25.6^{\circ}$ $\mu = 0.15 \text{ mm}^{-1}$

T = 173 (2) K

 $R_{\rm int} = 0.035$

 $\theta_{\rm max} = 25.6^{\circ}$

 $h = -29 \rightarrow 29$

 $k = -15 \rightarrow 14$

 $l = -21 \rightarrow 17$

Block, colourless $0.42\,\times\,0.37\,\times\,0.21$ mm

3371 reflections with $I > 2\sigma(I)$

Crystal data

$C_{16}H_{36}N^+ \cdot C_{24}BF_{20}^-$ $M_r = 921.51$			
$M_r = 921.51$			
Monoclinic, Cc			
a = 24.104 (2) Å			
b = 12.8925 (12) Å			
c = 17.5363 (15) Å			
$\beta = 130.629(5)^{\circ}$			
V = 4135.9 (7) Å ³			
Z = 4			
Data collection			
Stoe IPDS-II two-circle			
diffractometer			
ω scans			
Absorption correction: none			
10176 measured reflections			

Refinement

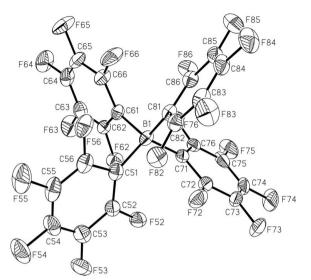

Refinement on F^2 $w = 1/[\sigma^2(F_0^2) + (0.0476P)^2]$ $R[F^2 > 2\sigma(F^2)] = 0.033$ wR(F²) = 0.075 where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.25 \ {\rm e} \ {\rm \AA}$ S = 1.003854 reflections $\Delta \rho_{\rm min} = -0.19 \text{ e} \text{ Å}^{-3}$ 560 parameters Extinction correction: SHELXL97 H-atom parameters constrained Extinction coefficient: 0.0036 (4)

Table 1

Selected bond lengths (Å).

3854 independent reflections

N1-C11	1.527 (4)	B1-C81	1.657 (4)
N1-C31	1.528 (4)	B1-C51	1.660 (5)
N1-C41	1.529 (3)	B1-C71	1.666 (4)
N1-C21	1.529 (3)	B1-C61	1.681 (4)

Figure 2

Perspective view of the anion of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

H atoms were located in a difference map, but refined with fixed individual displacement parameters $[U_{iso}(H) = 1.2U_{eq}(C_{methylene})$ or $U_{\rm iso}({\rm H}) = 1.5 U_{\rm eq}({\rm C}_{\rm methyl})$] using a riding model, with C–H = 0.98 and 0.99 Å for C_{methyl} and C_{methylene}, respectively. In the absence of significant anomalous scatterers, Friedel pairs were merged.

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 1991); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.

LeSuer, R., Buttolph, C. & Geiger, W. E. (2004). Anal. Chem. 76, 6395-6401. Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.

Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.